# How to Attack a Hash Function (in one easy lesson)

John Kelsey, NIST, August 2006

#### Damgaard-Merkle Construction

- Building a Hash Function from a Compression Function
  - Hash function takes variable length input
  - Compression function takes fixed length
  - Collision in hash function===> Collision in compression function



### Inside the Compression Fn.

- Sequence of rounds mix state with message
- Message schedule sends message to rounds
- Feedforward makes it hard to go backwards



### Overview: Finding a Collision

- Find a differential path (roadmap to collision)
- Repeat:
  - Choose M,M\* to follow as far as possible
  - Check to see if it follows path to end
- Until we get a collision



Message Modification Choose M,M\* to satisfy conditions and stay on path



## Differential Path: Conditions vs Probabilities

Follow differential path by satisfying conditions



#### Message Modification

- Choose M (and thus M\*) to satisfy as many conditions as possible.
  - Simple: Free choice of message bits
  - Advanced: Message bits being altered may mess up earlier conditions



Full message specified Simple Msg Modification All Changes Affect Previous Steps Advanced Msg Modification

## Switching to the Probability View

- At this point, we just see if the pair follows the differential path
  - Early Stopping
  - Backtracking/Free Bits of Message
  - Neutral Bits/Tunnels



#### Full Collision Attack

- Find differential path -> collision
- Use MM to follow path as far as possible
- Check if path followed after MM
- Repeat until a collision is found

Follow differential path by satisfying conditions



### Optimizing the Differential Path

- Finding a good differential path is key to these attacks
- Optimizing DP for message modification



Full message specified Simple Msg Modification All Changes Affect Previous Steps Advanced Msg Modification

#### Multiblock Collisions



- What if we can't find a good differential path for a one-block collision?
  - Find a path for multi-block collision
  - Difference left from M0 is canceled by M1
  - More flexible differential paths
  - Use MM to add still more flexibility to start of path

#### Attack Tools Can Help....

- Finding differential paths
- Evaluating better/worse paths
- Satisfying conditions in message modification

Follow differential path by satisfying conditions

